Home > categories > Minerals & Metallurgy > Aluminum Sheets > Analysis of a Magnesium-Aluminum Alloy?
Question:

Analysis of a Magnesium-Aluminum Alloy?

A 0.250-g sample of a magnesium-aluminum alloy dissolves completely in an excess of HCl (aq). When the liberated H2 is collected over water at 29 C and 752 torr, the volume is found to be 311 mL. The vapor pressure of water at 29 C is 30.0 torr. What is the mass percentage of aluminum in this alloy?

Answer:

I build aircraft,depends what aircraft it is. Some are made of a aluminum alloy mixed with other metal. Eurofighters outside skin is carbon fibre and contains many titanium parts. Then rivets hold everything together and they contain steel or alloy
This Site Might Help You. RE: Analysis of a Magnesium-Aluminum Alloy? A 0.250-g sample of a magnesium-aluminum alloy dissolves completely in an excess of HCl (aq). When the liberated H2 is collected over water at 29 C and 752 torr, the volume is found to be 311 mL. The vapor pressure of water at 29 C is 30.0 torr. What is the mass percentage of aluminum in this...
Aluminum Magnesium Alloy
P_H2 = 0.950 atm (Dalton's Law of partial pressures) n=Pv/RT = (0.950 atm)(0.311 L) / (0.08206 (L*atm)/(mol*K))(302.15 K) n_H2 = 0.011915983 mol Balanced equations: Al + 3HCl -- 3/2H2 + AlCl3 Mg + 2HCl -- H2 + MgCl2 By these equations, we know that every mole of Al will give us 1.5 moles of H2, and every mole of Mg will give 1 mole of H2. We can therefore set up an equation for the mass of Al like this: *Let a = the mass of MAGNESIUM* Al = 0.250 g - a With this equation in mind, we can setup two equations solving for 'n' of each element by dividing by its molar mass and multiplying by the molar ratio: n_Mg = a / 24.30 (1:1 ratio, so we don't have to multiply) -- number of moles of H2 produced by the reaction of Mg (now written as n_H') = a / 24.30 n_Al = (0.250 g - a) / (26.98 g/mol) Because of the molar ratio shown above, we must multiply n_Al by 1.5 in order to get n_H2 produced by the reaction of aluminum, hereafter known as n_H2 Since we know the number of moles produced by the sum of the reactions, we can add these equations together and solve for n_H2. (**note that your value will be different because you have a different volume**) Set up the equation like this: n_H2' + n_H2 = n_H2 = 0.011915983 mol Sub in your individual equations for n_H2' and n_H2: (a/24.3) + 1.5[(0.250-a)/26.98] = 0.011915983 mol Rearrange and solve for a (mass of MAGNESIUM): (26.98a + 9.1125 - 36.45a) / (24.3)(26.98) = 0.011915983 0.011915983 = 9.47a a = 0.137298281 g Once you have your 'a' value, divide it by the total mass (0.250 g) and multiply by 100%. This gives you the percentage of Mg. (0.137298281 g / 0.250 g) * 100% = 54.9193 % Since you want ALUMINUM, you must subtract the percentage of Mg from 100. 100 - 54.9193 = 45.08% So, the mass percentage of aluminum is 45.08%. I hope this is helpful!
Mg-Al + HCl -- MgCl2 + AlCl3 + H2 345ml gas collected over water vp water = 30torr total pressure - 30torr = pressure H2gas = 722torr = 0.95atm volume dry gas x 0.95atm = 345ml x 0.989atm volume dry gas = 359.3ml moles gas = pv/(rt) = 0.013moles 2Mg + 3Al + 10HCl -- 2MgCl2 + 2AlCl3 + 5H2 a) moles H2 = xgMg / 24.3g/mole x (5 H2 / 2Mg) = 0.103x b) moles H2 = ygAl / 27g/mole x (5H2 / 3Al) = 0.062y

Share to: