For this assignment, you will find roots of a polynomial using(a) False Position(b) Modified False Position(c) Newton Raphson(d) Modified Newton Raphsonmethods. The polynomial equation you need to solve will be defined by your own ID. Writedown the digits of your ID as coefficients as shown below (with example ID 2002100000036).Coef: 20 0210000 3 6Exp: 5.432. 1 0 This will form a polynomial of degree 5 for you. For the given ID, the polynomial will be:P(x) 2x5 + 0x4 + 2x3 + 1x2 + 3x1 + 6x0or, P(x) 2x5 + 2x3 + x2 + 3x1 + 6Pick out the highlighted digits of ID(2011000500050) as shown in the table to form your own polynomial.Question #1 [False Position](a) Find a root of the polynomial using False Position method within the bracket [10,10].(b) Find a root of the polynomial using Modified False Position method within the bracket[10,10].For both the tasks, stop your calculation if your result is correct up to 3 digits after the decimalpoint or you have done 5 iterations – whichever occurs first.
do you mean bracket [ -10, 10 ] (a) P(x) 2x5 + 2x3 + x2 + 3x1 + 6 f(-10)-201924 -0.0052 f(10)202136 f(-10)-201924 -0.0055 f(-0.0052)5.9843 f(-10)-201924 -0.0058 f(-0.0055)5.9834 f(-10)-201924 -0.0061 f(-0.0058)5.9825 f(-10)-201924 -0.0064 f(-0.0061)5.9816 f(-10)-201924 -0.0067 f(-0.0064)5.9807 f(-10)-201924 -0.007 f(-0.0067)5.9799 f(-10)-201924 -0.0073 f(-0.007)5.979 (b) f(-10)-201924 -0.0052 f(10)202136 f(-10)-201924 -0.0055 f(-0.0052)5.9843 f(-10)-201924 -0.0058 f(-0.0055)5.9834 f(-5.0029)-6502.6862 -0.0104 f(-0.0058)5.9825 f(-5.0029)-6502.6862 -0.015 f(-0.0104)5.9688 f(-2.509)-225.6591 -0.0791 f(-0.015)5.9552 f(-2.509)-225.6591 -0.1397 f(-0.0791)5.7679 f(-1.3243)-9.0117 -0.5935 f(-0.1397)5.5949 f(-1.3243)-9.0117 -0.8184 f(-0.5935)4.0066 f(-1.0714)-1.3487 -0.98 f(-0.8184)2.3841 f(-1.0714)-1.3487 -0.998 f(-0.98)0.3308